Chemistry Letters 1996 827

N,N-Dialkylation of Aminocarbene Complexes under Phase-Transfer Conditions

Li Zhao, Haruo Matsuyama, and Masahiko Iyoda* Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-03

(Received May 30, 1996)

The reaction of amide anions derived from aminocarbene complexes with alkyl halides under phase-transfer conditions has been investigated. The reaction of aminocarbene complexes of chromium and tungsten with α, ω -dihaloalkanes in the presence of sodium hydroxide and tetrabutylammonium bromide in dichloromethane-water produces azetidine, pyrrolidine, hexamethyleneimine and dihydroisoindole derivatives in moderate to good yields.

Although many types of reactions of carbanions derived from alkoxy- and aminocarbene complexes have been reported, 1 only a few reactions of amide anions derived from aminocarbene complexes were known until now. 2,3

The NH_2 groups of aminocarbene complexes (1 and 2) show higher acidity than that of acetamide, because amide anions (3 and 4) derived from 1 and 2 are stabilized by the neighboring metal carbonyl moieties.⁴ Thus, the amide anions (3 and 4) can be generated by a rather weaker base and can be expected to react with carbon electrophiles to form nitrogencarbon bonds.

We now report here a new methodology for the one-pot N,N-dialkylation of aminocarbene complexes under phase-transfer conditions.

$$(OC)_{5}M \xrightarrow{CH_{3}} base \left[(OC)_{5}M \xrightarrow{CH_{3}} (OC)_{5}M \xrightarrow{CH_{$$

Our preliminary work showed that the amide anion 3 generated from 1 with butyllithium reacted with methyl iodide to produce the N-methylated and N,N-dimethylated aminocarbene complexes in a good yield. However, the reaction of the amide anion 3 with α , ω -diiodoalkanes gave the corresponding cyclic amines only in poor yields, and a large amount of the starting materials was recovered. In order to improve the reaction conditions, many basic conditions were examined. After several attempts, we found the phase-transfer conditions can be successfully applied to the alkylation of amino carbene complexes.

The aminocarbene complex (1 mmol), methyl iodide (3-12 mmol), and tetrabutyl-ammonium bromide (0.1-0.2 mmol) in dichloromethane (5 ml) was treated with 50% aq. NaOH (4-8 mmol). The mixture was stirred under argon at room temperature or in an oil bath of 40-46 °C. The reaction was monitored by TLC until the starting material was consumed. After aqueous work-up, the products were isolated by column

chromatography on silica gel. The results are summarized in Table 1.

Phase-transfer-catalyzed methylation proceeds at room temperature to give the monomethylated 7 as the major product (entries 1 and 2). In addition, the dimethylated product 8 can be prepared using higher temperature and increased amounts of NaOH and methyl iodide (entries 3 and 4). Thus, monomethylation and dimethylation can be carried out selectively.

Table 1. Reactions of **1** with methyl iodide under phase-transfer conditions

^aBath temperature. ^bIsolated yields.

In a similar manner as above, the dimethylation of the tungsten complex 2 proceeded smoothly under phase-transfer conditions to give 9 in 64% yield.

The phase-transfer-catalyzed alkylation of aminocarbene complexes can be successfully applied to the synthesis of the azetidine derivatives as shown in Table 2. Thus, the reaction of 1 with 1,3-diiodopropane using 50% aq. NaOH (6 equiv.) and butylammonium bromide (0.2 equiv.) in refluxing CH_2Cl_2 gave 5a in 47% yield (entry 1). In a similar manner, the reaction of the tungsten complex 2 afforded 6a7 in 58% yield (entry 11). The better yield in 6a may depend on the difference in the stability of aminocarbene complexes under the reaction conditions.

The aminocarbene complexes (10 and 11) having a phenyl substituent react similarly with 1,3-diiodopropane to give the azetidine derivatives (12a and 13a) in 49 and 51% yields, respectively. Thus, the carbene complexes (1, 2, 10, and 11) can be converted into the azetidine derivatives (5a, 6a, 12a, and 13a) in moderate yields under phase-transfer conditions. These results suggest that the alkylation of aminocarbene complexes under phase-transfer conditions can be applied to the synthesis of

828 Chemistry Letters 1996

a series of carbene complexes containing nitrogen heterocycles. As shown in Table 2, the reaction of aminocarbene complexes with 1,4- and 1,5-dihaloalkanes in refluxing dichloromethane under argon for 15-24 h afforded the carbene complexes containing pyrrolidine and piperidine rings in good yields (entries 2-4, 7-9, 12-14, and 17-19). In the case of the seven-membered ring formation, the reactions of the aminocarbene complexes with 1,6-dibromohexane produced the hexamethyleneimine derivatives in 29-35% yields (entries 5, 10, 15, and 20).

Table 2. Reactions of aminocarbene complexes with α , ω -dihaloalkanes under phase-transfer conditions^a

$(OC)_5M \rightleftharpoons \begin{pmatrix} R \\ NH_2 \end{pmatrix}$	X-(CH ₂) _n X Bu ⁿ ₄ NBr	(OC) ₅ M=	R ≼
` / NH ₂	50% aq. NaOH CH ₂ Cl ₂		N ₁) _{n-2}
		5: M = Cr 6: M = W 2: M = Cr	a : n = 3 b : n = 4 c : n = 5
11: $M = W, R = Pl$	າ 1	3: M = W	d : n = 6

Entry	M	R	X-(CH ₂) _n X	Product Yie	eld (%) ^b
1	Cr	CH ₃	I-(CH ₂) ₃ I	$5a^{8,9}$	47
2	Cr	CH_3	$I-(CH_2)_4I$	$5b^{9,10}$	65
3	Cr	CH_3	Br-(CH ₂) ₄ Br	$5b^{9,10}$	57
4	Cr	CH_3	I-(CH ₂) ₅ I	5c ¹¹	62
5	Cr	CH_3	$Br-(CH_2)_6Br$	5d	29
6	Cr	Ph	I-(CH ₂) ₃ I	$12a^{8,9}$	49
7	Cr	Ph	$I-(CH_2)_4I$	$12b^{8,9,12}$	73
8	Cr	Ph	Br-(CH ₂) ₄ Br	$12b^{8,9,12}$	72
9	Cr	Ph	I-(CH ₂) ₅ I	$12c^{8,13}$	73
10	Cr	Ph	Br-(CH ₂) ₆ Br	12d	32
11	W	CH_3	$I-(CH_2)_3I$	6a	58
12	W	CH ₃	I-(CH ₂) ₄ I	$6b^{14}$	69
13	W	CH_3	Br-(CH ₂) ₄ Br	$6b^{14}$	68
14	W	CH_3	I-(CH ₂) ₅ I	6c	66
15	W	CH_3	Br-(CH ₂) ₆ Br	6d	33
16	W	Ph	$I-(CH_2)_3I$	13a	51
17	W	Ph	I-(CH ₂) ₄ I	13b	81
18	W	Ph	Br-(CH ₂) ₄ Br	13b	76
19	W	Ph	I-(CH ₂) ₅ I	13c	73
20	W	Ph	Br-(CH ₂) ₆ Br	13d	35

^aReactions were carried out by using 1 equiv. (1 mmol) of **1**, **2**, **10** or **11**, 3 equiv. of dihaloalkane, 0.2 equiv. of Bu₄NBr and 6 equiv. of NaOH in refluxing CH₂Cl₂ for 15-24 h. ^bIsolated yields.

The reactions shown in Table 2 proceed very smoothly, although the isolated yields are not high in some cases. The five-and six-membered ring formations occur easily as compared with the four- and seven-membered ring formations. The amino carbene complexes (1, 2, 5, 6 and 10-13) are rather stable at room temperature but gradually decompose under the reaction conditions. Except for the reactions of aminocarbene complexes with 1,6-diiodohexane, the reactions shown in Table 2 give the

N,N-dialkylated aminocarbene complexes as the sole product.

In order to apply our method to the synthesis of aminocarbene complexes containing an isoindoline moiety, the carbene complexes 14-17 were prepared. The reactions of the aminocarbene complexes with α,α' -dibromo-o-xylene under phase-transfer conditions proceeded smoothly to give the corresponding products in 61-63% yields. The reactivity of α,α' -dibromo-o-xylene was very high as compared with alkyl iodides and bromides in Table 2, and the reactions of 1, 2, 10 and 11 with α,α -dibromo-o-xylene were completed within 7 h.

$$(OC)_{5}M = \begin{pmatrix} Br & (3 \text{ equiv.}) \\ Bu^{n}_{4}NBr & (0.2 \text{ equiv.}) \\ \hline NaOH & (6 \text{ equiv.})-H_{2}O/CH_{2}CI_{2} \\ reflux, 7 & h \end{pmatrix}$$

$$1: M = Cr, R = CH_{3}$$

$$2: M = W, R = CH_{3}$$

$$10: M = Cr, R = Ph$$

$$11: M = Cr, R = Ph$$

$$11: M = W, R = Ph$$

$$11: M = W, R = Ph$$

$$17: M = W, R = Ph$$

We thank Drs. M. Yoshida and Y. Kuwatani, Tokyo Metropolitan University, for helpful discussions. Financial support by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, and Culture, Japan (07216260) is gratefully acknowledged.

References

- B. A. Anderson, W. D. Wulff, and A. Rahm, J. Am. Chem. Soc., 115, 4602 (1993); C. Schmeck and L. S. Hegedus, J. Am. Chem. Soc., 116, 9927 (1994); C. Baldoli, P. Del Buttero, E. Licandro, S. Maiorana, and A. Papagni, Synlett., 1995, 666, and references cited therein.
- 2 C. Bouancheau, A. Parlier, M. Rudler, H. Rudler, J. Vaissermann, and J.-C. Daran, *Organometallics*, 13, 4708 (1994), and references cited therein.
- 3 For organic synthesis using aminocarbene complexes, see L. H. Hegedus, *Acc. Chem. Res.*, **28**, 299 (1995).
- 4 We believe that the pK values of NH₂ group in 1 and 2 are lower than that of acetamide (pK = 25.5).
- 5 L. Zhao, H. Matsuyama, and M. Iyoda, "The Abstract of the 42nd Symposium on Organometallic Chemistry, Japan," (1995), p. 94.
- 6 S. R. Amin and A. Sarkar, Organometallics, 14, 547 (1995).
- 7 The structure of all new compounds reported here were fully characterized by the spectroscopic analysis.
- 8 J. A. Connor and R. D. Rose, *Tetrahedron Lett.*, **1970**, 3623.
- 9 A. Parlier, M. Rudler, H. Rudler, R. Goumount. J-C. Daran, and J. Vaisserman, *Organometallics*, **14**, 2760 (1995).
- 10 H. Rudler, A. Parlier, R. Yefsah, and B. Denise, *J. Organomet. Chem.*, 358, 245 (1988).
- 11 B. Denise, R. Goumont, A. Parlier, H. Rudler, J. C. Daran, and J. Vaissermann, J. Chem. Soc., Chem. Commun., 1990, 1238.
- 12 J. A. Connor, P. D. Rose, and R. M. Turner, J. Organomet. Chem., 55, 111 (1973).
- 13 J. A. Connor, E. M. Jones, E. M. Randall, and E. Rosenberg, *J. Chem. Soc.*, *Dalton Trans.*, **1972**, 2419.
- 14 B. A. Anderson, W. D. Wulff, and A. Rahm, *J. Am. Chem. Soc.*, **115**, 4602 (1993).